Friday, June 29, 2007
The cosmological constant (confusion)
Einstein's equation for gravitation G(x,y,z,t; m,l) = 0 (where m and l are
usually written as subscripts) is often written as G(x,y,z,t; m,l) = L(m,l)
where L is a constant, the cosmological constant, the energy of the vacuum (!).
(While nothing thus has a lot of energy physicists do not have enough energy to see
absurd errors.) What could possibly be wrong with this; the subscripts match.
There are many things (see the MRPG and OAIU books), such as equating terms from different representations, which is like equating a vector and a scalar, and predicting that a gravitational wave would be detected an infinitely long time before being emitted. Here we just mention one.
The right-hand side has been calculated to be huge (in physics, nothing has a lot of
energy) but it must experimentally be small even unfortunately 0. Physicists have
come up with the wildest explanations for the discrepancy involving extra
dimensions and other very ridiculous nonsense. This shows how brilliant they are
(which is the major aim) since only very brilliant people are able to come up
with such extreme nonsense. Of course the reason the cosmological constant is 0 is trivial, so of no interest to physicists since it doesn't allow them to show great brilliance. One side of the equation
is a function, which varies, the other side a constant which does not, obviously wrong. This is like saying 4x^3 + 7x^4 = 5 for all values of x. High-school students know that this is
wrong but professional physicists do not. Clearly physicists should hire high
school students to help them with their work so they won't make so many stupid
mistakes.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment